Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding
Text-to-image diffusion transformer with fine-grained understanding of both English and Chinese
Chinese-English Bilingual DiT Architecture
Hunyuan-DiT is a diffusion model in the latent space, as depicted in figure below. Following the Latent Diffusion Model, we use a pre-trained Variational Autoencoder (VAE) to compress the images into low-dimensional latent spaces and train a diffusion model to learn the data distribution with diffusion models. Our diffusion model is parameterized with a transformer. To encode the text prompts, we leverage a combination of pre-trained bilingual (English and Chinese) CLIP and multilingual T5 encoder.
Multi-turn Text2Image Generation
Understanding natural language instructions and performing multi-turn interaction with users are important for a text-to-image system. It can help build a dynamic and iterative creation process that bring the user’s idea into reality step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round conversations and image generation. We train MLLM to understand the multi-round user dialogue and output the new text prompt for image generation.
Comments
这看起来很棒